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A Sense of Scale

Terrabytes of data!

Images from: http://www.offshoreenergytoday.com/pgs-seismic-vessel-transfers-data-to-shore-via-12-mbits-link/ and

https://www.pgs.com/marine-acquisition/tools-and-techniques/the-fleet/flexible-capacity/sanco-sword/

http://www.offshoreenergytoday.com/pgs-seismic-vessel-transfers-data-to-shore-via-12-mbits-link/
https://www.pgs.com/marine-acquisition/tools-and-techniques/the-fleet/flexible-capacity/sanco-sword/


Data Acquisition

Images courtesy Prof. Jeremy Hall



Schematic View of Wave Propagation

(measurement movie)

From: https://giphy.com/gifs/refraction-pbGzTWOkabGFy/download


giphy.mp4
Media File (video/mp4)



Why is this hard?

material c(x)
sedimentary rocks: 2-4 km/s

igneous rocks: 2-7 km/s
metamorphic rocks: 1-4 km/s

at depth: 8-10 km/s

Stolk & Symes (2004)

travel distance: tens of wavelengths



Mathematical Model
e.g. Achenbach (73), Landau & Lifshitz (86), Aki & Richards (02)

Conservation of momentum (F = ma):

ρ
Dvj

Dt
= ρfj + ∂iσij

Da
Dt

= ∂a
∂t

+ v · ∇a

Hooke’s Law (linearly elastic, isotropic material):

σij = λεkkδij + 2µεij

σij stress tensor

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
strain tensor



Mathematical Model

General Assumptions:

• long wavelength compared to amplitude

• smooth displacement

For Today:

• linear elasticity

• constant density

• isotropy



Mathematical Model

Elastic Wave Equation:

ρ
∂2uj

∂t2
= (λ + µ)∂j∂kuk + µ∇2uj

Helmholtz decomposition: u = ∇φ +∇× ψ

∂2
tφ = c2

p∇
2φ

∂2
tψ = c2

s∇
2ψ

cp =
√

(λ + 2µ)/ρ

See Aki & Richards 2002 book cs =
√
µ/ρ
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Acoustic Simplification

Acoustic (really P-wave only) assumption

∇2φ−
1

c2
∂2

tφ = f

φ = 0 t < 0

∂zφ|z=0 = 0

Reasons:

• sources and receivers often in the ocean

• computational cost



Contrast Formulation

Acoustic (really P-wave only) assumption

Lφ := ∇2φ−
1

c2
∂2

tφ = f

Linearize: c(x) = c0(x) + δc(x)

Lφ = f

L0φ0 = f

note that L0 and φ0 use c0(x)



Contrast Formulation

Acoustic (really P-wave only) assumption

Lφ := ∇2φ−
1

c2
∂2

tφ = f

Linearize: c(x) = c0(x) + δc(x)

Lφ = f

L0φ0 = f

note that L0 and φ0 use c0(x)
subtract

Loδφ = δLφ

Symes 09 and Stolk 00 give estimates on linearization error



Contrast formulation

Born approximation
L0δφ = δLφ0

∇2δφ−
1

c0

2

∂2
t δφ =

2δc

c3
0

∂2
tφ0

δφ is called the scattered field



Separation of Scales

∇2δφ−
1

c0
2
∂2

t δφ =
2δc

c0
3
∂2

tφ0

We assume that on the scale of the wavelength:

• δc is oscillatory

• c0 is smooth

G0(r, t, x)

s

G0(x, t, s)

V(x)

r



Data Model

∇2δφ−
1

c0
2
∂2

t δφ =
2δc

c0
3
∂2

tφ0

Assume a δ-source

δφ(s, r, ω) = −
∫

X

G0(r, ω, x)
2δc(x)

c0(x)3︸ ︷︷ ︸
V(x)

ω2G0(x, ω, s)dx

G0(r, t, x)

s

G0(x, t, s)

V(x)

r



‘Typical’ Processing Steps

1 Filtering/Signal Processing/Geometry/Statics
(we will ignore these steps)

2 Velocity analysis, i.e. find c0,
usually via iterative imaging

3 Imaging (a.k.a. Migration),
i.e. find δc

From: Fehler & Larner TLE, 2008, http://tle.geoscienceworld.org/content/27/8/1006 and Spectrum

http://www.spectrumgeo.com/imaging-services/land-environment/depth-processing/pre-stack-depth-migration

http://tle.geoscienceworld.org/content/27/8/1006
http://www.spectrumgeo.com/imaging-services/land-environment/depth-processing/pre-stack-depth-migration


Imaging Methods

In
crea

sin
g

co
m

p
lexity

⇒

1 Stacking (aka averaging)

2 Kirchhoff Migration

3 One-way methods

4 Reverse-time methods



Velocity Analysis Methods

In
crea

sin
g

co
m

p
lexity

⇒

1 Normal Moveout Analysis/Semblance

2 Iterative Kirchhoff Migration

3 Iterative One-way methods

4 Iterative Reverse-time methods
–Full-Waveform Inversion (FWI)



Ray Tracing
(very briefly)

Assume solution form:

φ0(x, t) = eiωψ(x,t)
∑

k

Ak(x, t)

(iω)k

• Ak, and ψ SMOOTH

• eiωψ(x,t) oscillatory

• remove frequency dependence

Developed by Wentzel, Kramers, Brillouin, independently in 1926 and by Jeffreys in 1923;

see Appendix E of Bleistein, Cohen and Stockwell for more details.



Ray Tracing
(very briefly)

Apply Helmholtz to

φ0(x, t) = eiωψ(x,t)
∑

k

Ak(x, t)

(iω)k

Eikonal equation:

(∇ψ)2 =
1

c(x)2

Transport equations:

2∇ψ · Ak + Ak∇2ψ = 0



Ray Tracing
(very briefly)

Eikonal equation:

(∇ψ)2 =
1

c(x)2

Transport equations:

2∇ψ · Ak + Ak∇2ψ = 0

1 Nonlinear!
2 Method of characteristics (ray-tracing)
3 Usually use Runge-Kutta (requires smooth c)
4 Note that for constant velocity rays are straight lines



Simplest Approach
Stacking and Normal-Moveout Analysis

t(x) =
2

c

√
h2

1 +

(
x

2

)2

Correct for the x-dependence

tcorr(x) = tmeas(x)−
2

c

√(
x

2

)2

+

(
t(0)

2

)2

This is called the Normal Moveout Correction (NMO).



NMO Velocity Analysis

Minimizing ∂xt(x) = 0 gives a measure of velocity.



NMO Velocity Analysis

From Yilmaz’s book



NMO Velocity Analysis

From Yilmaz’s book



A more refined method
Differential Semblance

Minimize:

Jh =
1

2

∫
h2I2(x, z, h)dxdzdh

where I(x, z, h) is the NMO-corrected data before stacking
(averaging).

DSO (Differential Semblance Optimization) has been extensively studied by Symes and

co-authors. Of particular importance are Santosa & Symes (1986) and Shen & Symes (2008)



Kirchhoff Migration
WKBJ Modeling

δφ(s, r, t)=

∫
X

∫
T

G0(r, t−t0, x)
2δc(x)

c0(x)2
∂2

t G0(x, t0, s)dxdt0

G0(x, t0, s) ≈
∫

A(x, s, ω)eiω(t−T(x,s))dω

δφ(s, r, t) =

∫
X

∫
R
ω2

B(x,r,s,ω)︷ ︸︸ ︷
A(x, s, ω)A(r, x, ω)

2δc(x)

c0(x)2
eiω(t−T(s,x)−T(x,r))dxdω



Kirchhoff Migration
WKBJ Modeling Formula

δφ(s, r, t) =

∫
X

∫
R
ω2B(x, r, s, ω)eiω(t−T(s,x)−T(x,r))dxdω

Assume B independent of ω

δφ(s, r, t) =

∫
X

B(x, r, s)δ′′(t− T(s, x)− T(x, r))dx

This is a Generalized Radon Transform
Note that a Radon transform is often called a τ -p transform in exploration seismology.



Kirchhoff Migration
WKBJ Modeling Formula

δφ(s, r, t) =

∫
X

B(x, r, s)δ′′(t− T(s, x)− T(x, r))dx

0
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Kirchhoff Migration

Goal: Locate the singularities of δc from δφ
Requires F−1

Recall: data are redundant
Least Squares: F−1

LS = (F∗F)−1F∗

F∗[δφ](x) =

∫
R

∫
S

∫
R2n−1

ω2B(x, r, s, θ)e−iω(t−T(s,x)−T(x,r))dθdsdr

(Beylkin (85), Rakesh (88), Symes (95))



Velocity Analysis: Kirchhoff Methods

Data are redundant, exploit the redundancy to find the velocity
model c(x) 7→ c(x, h), we find

argmin
c

(∂hF∗[c](d(s, r, t)))

h can be
• offset (almost NMO)
• scattering angle
• subsurface offset
• time
• . . .

Symes’ 2009 review paper has an overview of this Symes 1999, 2001 justifies the use of local

optimization for layered partially linearized inversions



Imaging Methods – Summary

• Kirchhoff

I Integral technique, usually uses ray theory
I Linearized with Kirchhoff approximation
I Related to X-ray CT imaging
I Generalized Radon Transform

• For velocity analysis, iterate over ‘flatness’



One-Way Methods
Physical Motivation

• downward continuation

• imaging condition

Claerbout 71, 85

rs



One-Way Methods
Approximating the Wave Equation

Idea (1D, c constant=1):

(∂2
x − ∂

2
t )φ = (∂x − ∂t)(∂x + ∂t)φ

c not constant:

(c(x)2∂2
x −∂

2
t )φ = (c(x)∂x−∂t)(c(x)∂x +∂t)φ− c(x)(∂xc(x))∂xφ

c(x) smooth ⇒ better approximation

Taylor (81), Stolk & de Hoop (05) give more detail and more dimensions



Imaging Methods – Summary

• Kirchhoff

I Integral technique, usually uses ray theory
I Linearized with Kirchhoff approximation
I Related to X-ray CT imaging
I Generalized Radon Transform

• One-way

I Based on a paraxial approximation
I Usually computed with finite differences

• For velocity analysis, iterate over ‘flatness’



Reverse-Time Migration
Forming an Image

Procedure:
Whitmore (83), Loewenthal & Mufti (83), Baysal et al (83)

• back propagate in time

• imaging condition

G0(r, t, x)

s

G0(x, t, s)

V(x)

r



Reverse-Time Migration
an Adjoint State Method

Lailly (83,84), Tarantola (84,86,87) Symes (09)

For a fixed source, s,

(c−2∂2
t −∇

2)q(x, t; s) =

∫
Rs

δφ(r, t; s)δ(x− r)dr

q(·, t, ·) = 0 for t > T

receivers act as sources, reversed in time

Im(x) =
2

c2(x)

∫ ∫
q(x, t; s)∂2

t G0(x, t, s)dtds



Reverse-Time Migration
Example Liu et al (07)



Reverse-Time Migration
Example Liu et al (07)



Reverse-Time Migration
Example Liu et al (07)



Imaging Methods – Summary

• Kirchhoff

I Integral technique, usually uses ray theory
I Linearized with Kirchhoff approximation
I Related to X-ray CT imaging
I Generalized Radon Transform

• One-way

I Based on a paraxial approximation
I Usually computed with finite differences

• Reverse-time migration (RTM)

I Run wave-equation backward
I Usually computed with finite differences
I “No” approximations (to the acoustic, linearized wave-equation, for smooth

media assuming no multiple scattering)



Full-Waveform Inversion

Recall our initial formulation:

Lφ := (∇2 −
1

c2
∂2

t )φ = f

LG = δ

u = 0 t < 0

∂zu|z=0 = 0

FWI attempts to solve for c directly given u,f

there is no explicit splitting of c, but a smooth approximation is
generally obtained

Some references: Fichtner (book), 2011, Tarantola, (1987), Virieux & Operto (2009)



Full-Waveform Inversion

Recall our initial formulation:

Lφ := (∇2 −
1

c2
∂2

t )φ = f

LG = δ

Define
J = ‖G− d‖2

L2((S,R)×[0,T])

Find c that minimizes J

L2 is perhaps not the ideal norm (e.g. Symes (10))

Some references: Fichtner (book), 2011, Tarantola, (1987), Virieux & Operto (2009)



Full-Waveform Inversion
The Optimization Problem

J = ‖G− d‖2
L2((S,R)×[0,T])

Find δm s.t. J (m0 + δm) < J (m0)

J (m) ≈ J (m0) +
∂J
∂m0

(m0)δm

in continuous form

J (m(x)) ≈ J (m0(x)) +

∫
∂J
∂m0

(x′)δm(x′)dx′

m can be c, c−1, c−2 etc
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Full-Waveform Inversion
The Optimization Problem

J (m(x)) ≈ J (m0(x)) +

∫
∂J

∂m0(x′)
δm(x′)dx′

Find the minimum, set ∂J
∂m0

= 0

∂J
∂m0(x)

∣∣∣∣
m

≈
∂J

∂m0(x)

∣∣∣∣
m0

+

∫
∂2J

∂m0(x)∂m0(x′)
δm(x′)dx′

= g(m0; x) +

∫
h(m0; x, x′)δm(x′)dx′

g is the gradient and h is the hessian of J
This derivation is based on Margrave, Yedlin & Innanen (2011), CREWES report



Full-Waveform Inversion
The Optimization Problem

= g(m0; x) +

∫
h(m0; x, x′)δm(x′)dx′

δm(x) ≈
∫

h−1(m0; x, x′)g(m0; x′)dx′

g is the gradient and h is the hessian of J

This derivation is based on Margrave, Yedlin & Innanen (2011), CREWES report



Full-Waveform Inversion
The Optimization Problem

δm(x) ≈
∫

h−1(m0; x, x′)g(m0; x′)dx′

g(m0; x) =

∫
Ω,S,R

G0(s, x)︸ ︷︷ ︸
source

back-propagated data residual︷ ︸︸ ︷
[G0(x, r)δd(s, r, ω)] dsdrdω

This derivation is based on Margrave, Yedlin & Innanen (2011), CREWES report



Tromp et al (2005)



The Gradient and Hessian
Summary

• g(x) – size of model
xcorr:

I backpropagated residuals
I modeled source
I cost: two propagation steps



The Gradient and Hessian
Summary

• h(x, x′) = h1(x, x′) + h2(x, x′)
– (model size)2

I h1 depends on δd
I h2 does not ⇒ dominates

h2 has 4 propagation steps

x’

x

s
r

See Fichtner’s book [11] for an excellent overview of the physical meaning of the Hessian

and its relationship to the covariance, and Metivier et al, 2013, 2014, [17, 15] for a more

numerical-analysis-y overview.



Key Issues
Full-Waveform Inversion

• Computational Cost: lots of Helmholtz or wave equation
solves.

• Non-convexity: Initial model must be close to the true
model for convergence.

• Uncertainty Quantification: How do we quantify the way
errors in our data effect our final results and interpretations
of both velocity models and the resulting images?



A local FWI solver
Willemsen & M (2016), M & Willemsen (2016)



A local FWI solver
Willemsen & M (2016), M & Willemsen (2016)

• Much faster than solving in the full domain

• Reduced model space also improves convergence

• 3D is still a challenge



Key Recent Developments
Full-Waveform Inversion

Up to 2009 is well summarized by Virieux and Operto (2009) (which has
been cited 1000 times since 2016)

• Different objective functions:[6],[3],[13],[16],[8]

• Multi-parameter: [4],[5],[18],[19],[12],[25]

• Extend or change the model/combine with
tomography:[20],[2],[22],[1],[24],[7]

• Uncertainty Quantification: [14],[9],[26],[27]

• Lots of developments on the numerics of solving and updates,
organizing data etc



General References

• Symes Review [21]

• Virieux Review [23]

• Etgen Review [10]
• Books:

I Aki & Richards “Quantatative Seismology”
I Oz Yilmazs “Seismic Data Analysis: Processing, Inversion, and

Interpretation of Seismic Data”
I Bleistein, Cohen and Stockwell “Mathematics of Multidimensional

Seismic Imaging, migration and Inversion”
I Stein & Wysession “Introduction to Seismology”



• Meeting will attract world’s leading computational 
scientists, mathematicians, engineers interested in 
the parallel solution of PDEs

• 13 Plenary Speakers
• Tutorial style pre-conference short course
• Industrial geophysical problem minisymposia
• See dd25.math.mun.ca for more information
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